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Mathematical simulation of the ¯ow-through porous electrode (PE) operation on the basis of a one-
dimensional model with a uniform conducting matrix and a cathodic process involving the main and
side reactions (i.e., hydrogen evolution) has been made. The in¯uence of current density and rate and
direction of the solution ¯ow on the depth of the main process penetration into the PE has been
analysed for di�erent relationships between phase conductivities. It has been shown that when the
polarization curve of the side reaction is Tafelian, and the rate of solution circulation is high, there is
a limit for the main process penetration into the PE. This limiting value is close to the thickness of the
layer, Ld, capable of working at the limiting di�usion current obtained by Sioda's method. The
dependence of the Ld layer thickness on phase conductivity has been analysed. In the limiting cases
(low fractional conversion, high or identical phase conductivities) analytical expressions for Ld have
been obtained. At low ¯ow rates, the depth of the main process penetration increases up to the value
of the entire thickness of the PE. It can be concluded that the possibility of increasing the PE
e�ciency for the uniform matrix by changing phase conductivities is limited.
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Nomenclature

P �x�; u�x� local potentials in the solid and liquid
phases (V)

g�x� polarization (V)
i; i` local and limiting current densities

(A cmÿ2)
i1; i2 current densities of the main and side

reactions (A cmÿ2)
ia; ig modulus of average and total (geometric)

current densities (A cmÿ2)
ia`; ig` limiting values of modulus of the average

and geometric current densities, when the
entire PE surface is working at the limit-
ing di�usion current (A cmÿ2)

/r1; /r2 equilibrium potentials of the main and
side reactions (V)

i01; i02 exchange current densities (A cmÿ2)
a1 transfer coe�cient of the main reaction
km mass transfer coe�cient (cm sÿ1)
js; jL solid and liquid phase conductivities

(Xÿ1 cmÿ1)
Sv speci®c surface of the PE (cmÿ1)
C; Cs local concentrations of the electroactive

component inside a pore and at the
surface of the PE (mol cmÿ3)

u linear rate of the solution ¯ow (cm sÿ1)

z number of electrons transferred per ion
discharged in the main reaction

F Faraday constant (96 487Cmolÿ1)
L thickness of PE (cm)
Ld thickness of PE layer operating at the

limiting di�usion current (cm)
Leff e�ective value of Ld involving the zones of

current density lower than limiting (cm)
Xmin; Xmax coordinates of points with the minimum

and maximum polarization inside PE
(cm)

Dg1; Dg2 polarization di�erences between the least
loaded point inside PE and the back or
frontal ends of the electrode (V)

Dg maximum value of polarization
di�erences

DE1; DE2 width of the limiting current plateau
obtained by di�erent ways of geometrical
transformation of the total polarization
curve

R fractional conversion of the electroactive
component

R1 � 1=js � 1=jL
R2 � jL=�js � jL�
A1 � C0 z F u
A � Sv km L=u
B � A=L
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1. Introduction

The application of porous electrodes (PE) of high
speci®c surface area and mass transfer coe�cient is a
promising approach to electrochemical process in-
tensi®cation. At present, PE are commonly used in
chemical power supplies, fuel cells and metal extrac-
tion from industrial solutions and waste waters [1±3].
The main problem in PE theory is the search for
conditions providing the most e�cient utilization of
their extended surface for the performance of the
speci®ed main process. These conditions commonly
involve attainment of the most uniform potential
distribution over the PE depth and depend on several
factors. The in¯uence of electrochemical factors as-
sociated with the electrode±solution interface have
received most attention [4±7]. The parameters that
determine the passage of the current over the solid
and liquid phases have been considered as passive
factors (i.e., as constants) and have not yet been used
for active control of the spatial localization of
electrochemical processes.

In most work on PE theory, the solid phase con-
ductivity is assumed to be constant (more often
js�x� � 1�. Nevertheless, the necessity of considering
the js�x� pro®le to interpret the observed current
distribution over a PE may be illustrated by the fol-
lowing examples. First, solid-phase conductivity
changing with electrode thickness has been observed
experimentally; for example, in metal electrodeposi-
tion on high-resistance porous matrices. Solid-phase
conductivity determines, to a great extent, practically
important parameters for ®lling the matrices with
metal [8]. Second, it is di�cult to explain anomalous
phenomena such as the appearance of anodic zones
inside cathodic polarized PEs without considering
solid and liquid phase conductivity pro®les occurring
inside the PE [9]. Third, approximate theoretical es-
timates show that the varying pro®le of solid-phase
conductivity holds much promise for smoothing
current distribution to the point of it being ideally
uniform [10].

Taking into account the above considerations, an
attempt is made to follow the main tendencies and
quantitative scales of the in¯uence of solid-phase re-
sistance on the spatial localization of the main elec-
trochemical process and, eventually, on the e�ciency
of PE internal surface utilization. Since the action of
factors determining the electric ®eld in a PE is often
interconnected, the in¯uence of one factor depends
on the changes of the others. Therefore, in discussing
the in¯uence of the solid phase we shall partly
consider the in¯uence of other parameters such as
liquid-phase resistance, solution ¯ow rate, electrode
thickness and current density.

2. Physical and mathematical formulation
of the problem

The main method of analysis used in the present
paper is numerical simulation of PE performance

based on the computation of electric and concentra-
tion ®elds inside the PE with the adoption of a de®-
nite physical model and kinetic equations for the total
polarization curve. By analysing the current and po-
tential distribution across the PE, it is possible to
determine the quantitative characteristics of the per-
formance e�ciency (i.e., layer thickness working at
the limiting di�usion current) and observe their de-
pendence on di�erent parameters.

To avoid unnecessary mathematical di�culties, we
use the simplest unidimensional mathematical model
of a PE (Fig. 1) and the simplest electrode process
involving the main and side (hydrogen evolution)
electrochemical reactions. For de®nition, it should be
also mentioned that the PE under consideration has a
back current feeder to which the origin of coordinates
is ®xed. The X-axis is directed inside the PE to a
counter electrode.

The mathematical model [4, 7, 9] is based on the
simultaneous solution of a di�erential equation for
the potential and current distribution and a transfer
equation for the discharging ion of the main reaction.
For constant js and jL,

d2g=dx2 � SvR1i�g� �1�
dc=dx � Svi1�gÿ /r1�=�u z F � �2�

where

g�x� � P �x� ÿ /�x� �3�
i�g� � i1�gÿ /r1� � i2�gÿ /r2� �4�

Since we consider the case of large di�erences of
concentration gradients, it is reasonable to account
for the concentration dependence of /r1 using the
Nernst equation.

/r1 � /r0 �
RT
zF

ln c�x� �5�

where /r0 is the standard value of /r1.
To solve this set of simultaneous equations, the

following boundary conditions are used:
at x � 0; c � c0

dg=dx � ig=js �6�
at x � L

dg=dx � ÿig=jL �7�
where

Fig. 1. Relative positions of working (a) and counter (b) elec-
trodes, current-feeder (c) and the direction of current ¯ow.
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ig � L ia Sv �8�
We consider a cathodic process, so that at
L > x > 0; g < 0 and i�g� < 0. The absolute values of
the geometric current density in Equations 1, 6, 7 and
of the average current density in Equation 8 are ta-
ken; thus they are positive. A partial polarization
curve of the main process takes into account the
discharge transfer stage and concentration changes in
the surface layer of solution:

i1 � i01 exp
azF
RT

gÿ /r1� �
� ��

ÿ cs�x�
c�x� exp ÿ

�1ÿ a�zF
RT

gÿ /r1� �
� ��

�9�

In the steady state:

cs�x�=c�x� � 1ÿ i1=i1` �10�
where

i1` � z F c�x� km �11�
and km is the mass-transfer coe�cient which depends
on the ¯ow rate [11]:

km � 0:02 u0;35 �12�
Equation 10 allows i1 to be expressed as a function of
i1` and g.

i1 �
i01 exp azF

RT �gÿ /r1�
ÿ �ÿ exp ÿ �1ÿa�zF

RT �gÿ /r1�
� �� �

1� i01
i1`
exp ÿ �1ÿa�zF

RT �gÿ /r1�
� �� �

�13�
Only the discharge stage is considered in the partial
cathodic polarization curve of hydrogen evolution:

i2 � i02 exp
F
2RT
�gÿ /r2�

� ��
ÿ exp ÿ F

2RT
�gÿ /r2�

� ��
�14�

/r2 is assumed to be constant, and the transfer coef-
®cient is taken to be 0.5.

The method used in the calculations was similar to
that described in [7], with the following additional
criteria of solution stability [12]: (a) an integral of the
current density along the thickness of the PE must be
equal to the given total current to a su�cient accu-
racy (of 1%); and (b) a solution must be stable with
doubling the number of grid points over the depth of
the PE.

It should also be noted that for a uniform porous
matrix, a simpler method of calculation suggested by
Sioda [13] ®ts adequately. The principle of this
method is based on the fact that the common prob-
lem of calculating the current and potential distri-
bution over a PE is reduced to the search for a
maximum polarization di�erence between points as-
suming that the entire PE surface is working at the
limiting current. This allows consideration of the
di�usion component of the equation describing cur-
rent transfer, which simpli®es further analysis sig-
ni®cantly and, in some cases, helps to obtain

analytical solutions. We shall also use this approach,
extending it to include arbitrary relations between
phase conductivities.

3. Results and discussion

3.1. Symmetry of electrical and concentration
®elds in a PE

The boundary problem described above has varia-
tions according to the relations between the solid and
liquid phase conductivities, the location of the cur-
rent-feeder and the direction of the solution ¯ow (see,
for example, [6]). A complete consideration of the
variants involves a large body of numerical calcula-
tions. However, the latter may be signi®cantly re-
duced without any signi®cant loss of analysis
completeness by taking into account the symmetry of
the boundary problem.

The boundary problem (Equations 1±7) has been
deduced for back solution supply. For the front
supply, Equation 1 will be invariant to the change of
the direction of the X-axis for the opposite. Equa-
tion 2 will be invariant to the reversal of both X-axis
and ¯ow direction. If the js and jL values change
places in the boundary conditions, the same boun-
dary problem is obtained; that is, the system pos-
sesses symmetry about the supply direction and solid
and liquid-phase conductivities. Evidence for this
symmetry has been obtained earlier for the case of
high solution ¯ow rates [14].

Due to the symmetry, the electrical and con-
centration ®elds in the PE for back supply and
de®nite js and jL values are completely identical to
the corresponding ®elds for front supply and op-
posite js and jL values. Therefore, it is su�cient to
study the behaviour of di�erent parameters for only
one of the two supply variants (for example, the
back one) over a wide range of both phase con-
ductivities.

3.2. Ld estimate for arbitrary relation between solid
and liquid phase conductivities

Quantitative analysis of Ld has been carried out in
[13] for back solution supply and in®nite conductivity
of the solid matrix. In this case, the polarization
distribution over the depth of the PE is monotonic,
and the required di�erence in the maximum and
minimum values of polarization has been determined
by integrating over the entire depth of the electrode,
L. An attempt to extend the results of [13] to the case
of an arbitrary relation of phase conductivities has
been made [15]. However, nonmonotony of the cur-
rent distribution over the depth of the electrode has
not been accounted for, which has led to erroneous
results.

To determine the maximum abrupt change of the
di�usion polarization, it is necessary ®rst to ®nd the
position of its minimum. The Equation 1 is to be
integrated between 0 and x. In this case, it should be
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considered that i�x� � i1`�x�, that is, the local current
density is equal to its di�usion component, and the
geometric density of the limiting di�usion current ig`
is expressed as

ig` �
ZL

0

i1`Svdx � A1�1ÿ exp�ÿA�� �15�

Taking into account that dg=dx � 0 at the point of
minimum, after substitution of Equation 15 and some
transformations we obtain

xmin
L
� ÿ 1

A
ln 1ÿ R2 � R2 exp�ÿA�� � �16�

It follows from Equation 16 that the relative po-
sition of the minimum concentration polarization is
determined by two dimensionless complexes, namely,
the relation between the solid and liquid-phase con-
ductivities and a parameter, A, which evaluates the
extent to which the electroactive component con-
centration is reduced as the solution passes through
the PE. This dependence is shown in Fig. 2. It is clear
that for small A, that is, for small fractional conver-
sion, the position of xmin depends only on the relation
js=jL: for js � jL; xmin � 0:5 L; for js � jL;
xmin ! L; for js � jL; xmin ! 0. For high values of

A (fractional conversation of electroactive component
per a passage of the solution is about 1), the position
of the minimum point is independent of the relation
between the conductivities and coincides with the
point where the most concentrated solution is intro-
duced into the PE (x � 0). For the intermediate range
of A, the position of xmin is determined by the com-
plexes both simultaneously.

Thus, knowing the position of the polarization
minimum and alternately integrating Equation 1
between 0 and xmin, and between xmin and L, we ob-
tain expressions for potential di�erences between this
point and the back and front ends of the PE, res-
pectively:

Dg1 � g�xmin� ÿ g�0�
� ig`xmin

js
ÿ R1A1xmin ÿ R1A1

B
exp B xmin� � ÿ 1� �

�17�
Dg2 � g�L� ÿ g�xmin�

� ig`�Lÿ xmin�
js

ÿ R1A1�Lÿ xmin�

ÿ R1A1

B
exp ÿA� � ÿ exp ÿBxmin� �� � �18�

The largest of these di�erences Dg determines the
maximum thickness Ld of a PE capable of working at
the limiting di�usion current. Equating it to the
width, DE, of the limiting current plateau on the
polarization curve, we obtain a transcendental
equation with respect to Ld, which may be solved by
an appropriate numerical method, for example, by
dividing the length in two. From Equations 17 and 18
it follows that, as opposed to the position of the
minimum polarization point, the value of Ld depends
not only on the relationship between the solid and
liquid-phase conductivities, but also on their absolute
values. The three-dimensional surface Ld � f �js; jL�
would be a clear illustration of this dependence. The
sections of this surface at js=const and jL � const
obtained at constant Dg and PE parameters for a
range of linear solution rates, are shown in Figs 3 and
4, respectively. The values of solution rates are cho-
sen so as to demonstrate the in¯uence of di�erent
fractional conversion of the electroactive component.
It is evident from Fig. 3 and 4 that in the general case
Ld is a composite function of the solid and liquid-
phase conductivities. The main features of this de-
pendence are as follows:

(i) At any solution ¯ow rate a decrease in the phase
conductivity of both solid (Fig. 3) and liquid
(Fig. 4) phases leads to a decrease in Ld down to
zero. Such a behaviour of Ld seems to be natural

Fig. 2. Relative coordinate of the polarization minimum inside PE
against the value of the dimensionless parameter A at the back
solution supply and the following values of js=jL: (a) 0.01; (b) 0.1;
(c) 1; (d) 10; (e) 100.

Fig. 3. The maximum PE depth working at the limiting di�usion
current as a function of the solid phase conductivity at di�erent
solution ¯ow rates (cm sÿ1): (a) 10; (b), (c) 0.2 and the de®nite
values of jL �Xÿ1 cmÿ1�: (a), (c) 0.1; (b) 0.05. The back solution
¯ow; other parameters: c01 � 10ÿ5 M cmÿ3; z � 1; Sv � 150
cmÿ1;Dg � 0:3 V.
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because in both these boundary cases the elec-
trode ceases to be permeable to the current.

(ii) At high solid and liquid-phase conductivities, Ld
tends to a limit essentially dependent on the so-
lution rate.

(iii) Between the above-mentioned boundary values,
the dependence Ld � f �js; jL� has a maximum
which corresponds to the equality js � jL at
high solution rate. Under these conditions the
in¯uence of js and jL is completely symmetrical
(see curves (a) in Figs 3 and 4).

3.2.1. Approximate analytical equations. At low val-
ues of the dimensionless parameter A and given val-
ues of phase conductivities, approximate analytical
expressions for Ld may be deduced. An approximate
relation for the minimum polarization point may be
initially derived. Replacing exp�ÿA� in Equation 16
by �1ÿ A� and ln �1ÿ R2A� by ÿR2A, We have

xmin=L � R2 � jL=�js � jL� �19�
With allowance for the known minimum position,

we consider the approximate equality for Ld at spe-
ci®c relations between js and jL.

�a� js � jL or js � jL

At high conductivity of the electrode matrix, the
minimum of polarization is near the back current-
feeder. Therefore, the di�erence in potentials between
the least and the most loaded points of PE is deter-
mined by Equation 18. Substituting js � 1 and
xmin � 0 in Equation 18 and changing exp �ÿA� by
expansion into a series to the third term
�1ÿ A� A2=2�, we obtain a relation for Dg, com-
pletely coinciding with that previously deduced for
the same conditions [13, 16±19]:

Dg � A1AL
2jL

�20�

Thus, the thickness of PE capable of working at the
limiting di�usion current can be estimated as follows:

Ld;js!1 '
��������������
2jLDg

A1B

s
�21a�

This relation gives a square root dependence of Ld on
the electrode parameters and electrolysis conditions.
At jL !1, an analogous limit results:

Ld;jL!1 '
�������������
2jsDg
A1B

s
�21b�

�b� js � jL

In this case Dg1 � Dg2; xmin � L=2, R1 � 2=jL. Sub-
stituting these values into Equation 17 and replacing
exp (ÿB xmin) by expansion into a series to the third
term, gives the following equality for Ld:

Ld;jS�jL '
��������������
4jLDg

A1B

s
�22�

It is evident that at equal phase conductivities, the
square root dependence of Ld on PE parameters and
electrolysis conditions remains valid. At equal values
of the parameters, the PE thickness capable of
working at the limiting di�usion current in this case
should be

���
2
p

times that for the in®nite conductivity
of, for example, the solid phase. Comparing the re-
lationships between limiting values (Equations 21 and
22) with the data in Figs 3 and 4, they are in agree-
ment with the results of numerical calculations.

3.3. Comparison of approximate Ld estimates with the
results of complete calculation of the current distribu-
tion over a PE: in¯uence of average current density

Figure 5 shows an example of the cathodic polar-
ization curve used in calculations and illustrates dif-
ferent graphic methods used in estimation of the

Fig. 4. Examples of sections of the surface L � f �js;jL� by the
planes js � const �Xÿ1 cmÿ1�: (a), (c) 0.1; (b) 0.05; at di�erent
solution ¯ow rates �cm sÿ1�: (a) 10; (b), (c) 0.2. Other parameters
are the same as in Fig. 3.

Fig. 5. An overall cathodic polarization curve of the main and side
reactions and a scheme of two graphic methods providing the
minimum �DE1 � 320 mV� and the maximum �DE2 � 530 mv�
limiting current plateau width. The boundaries of the limiting
current plateau are determined by the points where the current
deviates from the limiting value by the given magnitude (1±2%)
(1st method), and the points of crossing of the limiting current line
with the tangents to partial polarization curves of the main and side
reactions (2nd method). Parameters: c01 � 10ÿ5 M cmÿ3; i01 �
10ÿ3 A cmÿ2; a1 � 0:5; z1 � 1; i02 � 10ÿ6 A cmÿ2;/r2 ÿ /r1 �
ÿ0:3 V; u � 1 cm sÿ1.
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width of the limiting current plateau for the main
reaction. It is clear that, depending on the methods,
the plateau width ranges between 320 and 530 mV. In
accordance with Equation 21(a), this corresponds to
Ld values of 0.2 and 0.26 cm.

Figure 6 gives a typical variation pattern of the
spatial localization of the main process over the depth
of a su�ciently thick (L � 3 Ld) PE as the geometrical
current density is changed. In order to clearly di�er-
entiate the parts of the electrode working at the lim-
iting current, the relative current density i1=i1` is used.
In this case, the parts of the PE where this ratio is
equal to 1� 0:01 correspond to the region of di�usion
control. From the results shown in Fig. 6 it is evident
that at low geometric current density, the limiting
di�usion current is not attained even at the most
loaded point of the electrode. Current distribution is
very nonuniform and localized at the front end of PE.
As the current density increases, the pro®le of current
distribution for the main reaction moves deep into the
electrode, but this is observed only until a certain limit
is achieved. A further increase in the current load has
essentially no e�ect on the pro®le of the i1 distribution.

As seen from Fig. 6, the working region of the
electrode is not equivalent to the layer thickness Ld
but is appreciably wider. Therefore, to characterize
quantitatively the PE e�ciency, it is appropriate to
introduce, along with Ld, the e�ective thickness of the
working region of the PE, Leff, which accounts for the
total current of the main reaction:

Leff �
ZL

0

i1�x�
i1`�x� dx �23�

The changes of Ld, Leff and the current e�ciency of
the main reaction with the increase in the geometric
current density are shown in Fig. 7. It is evident that
both parameters of the spatial localization of the
main process change analogously, which is a result of
the approximate parallelism of the current pro®les in
Fig. 6. The deceleration of the movement of the
working region deep into the electrode with increase

in geometric current density and the attainment of
limiting values by both the parameters are apparently
correlated with the marked decrease in the current
e�ciency. This means that the loaded region of the
electrode is localized in the region of polarization
corresponding to the hydrogen part of the polariza-
tion curve. As the current density increases further,
essentially the whole additional current is spent on
the useless (and taking into account possible side
negative e�ects, rather harmful) hydrogen evolution
in the PE and has no in¯uence on the spatial local-
ization of the main process.

Thus, the above results show that when the side
cathodic process of hydrogen evaluation takes place,
it is impossible to cause the main process to penetrate
into the porous electrode deeper than to a certain
limit by increasing the geometric current density. For
example, under the conditions given in Fig. 6 at a
total electrode thickness of 0.5 cm, the thickness of
the limiting layer working at the limiting di�usion
current, is 0.2 cm. Comparison of this value with Ld
estimates by the Sioda method shows that it coincides
with the value calculated from the minimum width of
the limiting current plateau (0.2 cm). The employ-
ment of the maximum width of the limiting current
plateau gives L � 0:26 cm which is 30% above the
true value.

In conclusion, in the above case the working sur-
face of a PE available for the main reaction is inde-
pendent of the geometric current density under
conditions where the whole surface is not working at
the limiting current. This means that such indepen-
dence is a necessary, but not su�cient, condition for
working of the entire PE thickness at the limiting
di�usion current.

3.4. In¯uence of the rate and direction of solution ¯ow
on the e�ciency of the PE

The direction and rate of solution ¯ow through a PE
is a signi®cant electrolysis parameter controlling the
electroactive component mass transfer [2], and also

Fig. 6. Distribution of the relative current density of the main re-
action over the depth of PE at di�erent values of geometric current
density �A cmÿ2�: (a) 0.3; (b) 0.6; (c) 0.8; (d) 1; (e) 1.5. Parameters
of PE: L � 0:5 cm; SV � 150 cmÿ1; js � 100Xÿ1 cmÿ1; jL �
0:2Xÿ1 cmÿ1. Other parameters are the same as in Fig. 5.

Fig. 7. The in¯uence of geometric current density on the PE layer
depth working at the limiting current Ld (a), the e�ective working
layer depth Leff (b) and the current e�ciency of main reaction (c).
The conditions are the same as in Fig. 6.
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the uniformity of the main reaction distribution over
the depth of the PE [6, 14]. The simplest current
distribution pattern is observed at high solution rates.
Under these conditions, the electroactive component
concentration changes insigni®cantly during its pas-
sage through the PE. Correspondingly, the polariza-
tion curve is one and the same at every point in the
PE. Hence, the direction of solution ¯ow turns out to
be nonessential and the e�ciency of the PE internal
surface operation depends only on the potential dis-
tribution. A decrease in the solution ¯ow rate may
lead, as well as the qualitative changes in some pa-
rameters (for example, mass transfer coe�cient), to
the appearance of a new factor, that is, a pro®le of the
electroactive component concentration over the
depth of the PE. The interplay of the latter with the
potential pro®le gives a more complicated current
distribution pattern. Actually, at every point of the
PE there is a distinct polarization curve which may
di�er from others not only by the height of the lim-
iting current plateau but also by its width (due to the
shift in the equilibrium potential). As a result, a
choice of the plateau width and corresponding ap-
plication of an approximate estimate of Ld in this case
is more di�cult. Therefore, to analyse the in¯uence of
the solution rate and direction, a set of complete
calculations of the electric and concentration ®elds in
a PE of ®xed thickness (L � 1 cm) was carried out for
the polarization curve (Fig. 5) and a wide region of
solution ¯ow rates (u � 0:03 � 30 cm sÿ1) for three
characteristic relationships between phase conduc-
tivities: js � jL; js � jL and js � jL. In view of the
results of the previous Section concerning the de-
pendence of the depth of the main process penetra-
tion on the average current density, all the
calculations were conducted at the constant current
overload ia=ia` � 1:1. The layer thickness Ld working
at the limiting di�usion current served as a quanti-
tative measure of the PE e�ciency.

Figure 8 presents the characteristic relations of Ld
dependences on the solution ¯ow rate. It can be seen
that over a wide range of u, two parts of the plot
di�ering by the steepness of the slope and the in¯u-
ence of the relationship between js and jL are ob-
served. At high solution ¯ow rates, Ld depends on u
only weakly and the boundary cases (js � jL and
js � jL) coincide completely. Moreover, at equal js
and jL, the thickness of the e�ective operating layer
is about one and a half times larger, that is, the
previously established regularities of the js and jL
in¯uence are valid (see Section 3.2.1). A physical
cause of Ld reducing with u rise (in this range of so-
lution ¯ow rates) is associated with the increasing
height of the limiting current plateau due to the de-
pendence of km on the ¯ow rate.

For low solution ¯ow rates (u < 0:5 cm sÿ1), an-
other picture is evident, that is, Ld increases abruptly
with decreasing u and a considerable di�erence bet-
ween the boundary cases (js � jL and js � jL) is
observed. Moreover, the advantages related to the
equality of conductivities disappear and the curve for

js � jL practically coincides with that for js � jL.
The curves reach a limit at even lower values of ¯ow
rate. This means that the PE width capable of
working at the limiting current exceeds the value of L.

Obviously, the above-mentioned peculiarities of
low solution rates in this range of u indicate the
emergence of a new controlling factor which facili-
tates the penetration of the process into the PE. This
factor is most likely to be the abrupt decrease in the
electroactive component concentration over the
depth of the electrode and the corresponding increase
in the polarizability of the electrode. This conclusion
is clearly con®rmed by Fig. 9, where the same data
for Ld as those given in Fig. 8 are shown as functions
of fractional conversion R � 1ÿ c�L�=c�0�. It is evi-
dent that when the concentration change for a pas-
sage is small (about one order of magnitude), the
width of the working layer is also small and depends
on R only weakly. However, when R! 1, the func-
tion Ld � f �R� becomes an essentially vertical line

Fig. 8. The in¯uence of the solution ¯ow rate on the depth of PE
layer working at the limiting di�usion current at di�erent values of
phase conductivities �Xÿ1 cmÿ1�: (a) js � jL � 0:2; (b) js � 200,
jL � 0:2; (c) js � 0:2, jL � 200. Characteristics of PE: the back
current feeder, the back solution supply Sv � 150 cmÿ1; L � 1 cm.
The parameters of the polarization curve are the same as in Fig. 5.

Fig. 9. The PE layer depth working at the limiting di�usion cur-
rent against the fractional conversion of the electroactive compo-
nent R (with data in Fig. 8). (j) variant (a); (m) (b); (´) (c). The
lines are simply ®tted curves passing through the points.
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and such a character of the dependence is observed
for any relations between js and jL.

The latter result is somewhat di�erent from the
conclusions of [6], where a principle di�erence in PE
behaviour with js � jL for back and front solution
supply has been emphasized: for front supply, even a
very thick PE �Ld > 15 cm� is operating at the limit-
ing di�usion current, but for back supply it is not
�Ld < 2:5 cm�. Taking into account the previously
established symmetry of the electrical ®eld in a PE, a
change in the direction of solution supply is equiva-
lent to replacement of the relation between phase
conductivities by the opposite one at the same solu-
tion supply. A noticeable di�erence between these
variants is apparent from Fig. 8; however, it is
quantitative rather than qualitative. At su�ciently
low ¯ow rate, the limiting current may be attained
over the entire surface of the PE both at the front and
at back supply, but in the latter case, lower values of
u are needed.

A physical reason for the essential di�erence in PE
e�ciency for the reverse direction of solution supply
at low ¯ow rates seems to be the di�erent interaction
of polarization and electroactive component con-
centration pro®les over the PE depth. When the
mentioned pro®les coincide in the character of be-
haviour (js � jL with back supply) the most fa-
vourable conditions occur for the working of the
entire surface at the limiting di�usion current. Actu-
ally, in this case the most loaded point (near the back
current-feeder) and the point where the most con-
centrated solution enters the electrode coincide.
When moving away from this point, an exponential
drop in the main reaction current and approximately
the same decrease in concentration are observed.
Thus, the state of the limiting current is maintained as
if automatically.

The most unfavourable situation occurs for the
pro®les g�x� and c�x� with the opposite character of
behaviour, that is, the minimum solution concentra-
tion corresponds to the most loaded point of the PE,
and vice versa. This makes the attainment of the
limiting di�usion current over the entire PE surface
di�cult, but in this case, the depletion of the solution
in the depth of PE also causes an increase in the
polarization resistance at these points and current
redistribution towards the less loaded layers. Even-
tually, this leads to the e�cient working of the entire
PE surface, but it is more costly (because of the lower
solution ¯ow rate, higher current overload and de-
crease in the current e�ciency).

Relationships between the di�erence in the maxi-
mum and minimum values of polarization and the
solution ¯ow rate are shown in Fig. 10. These were
calculated for the same variants as in Fig. 8. It is
evident from the comparison of the ®gures that both
the behaviour of Ld and polarization di�erence are
closely interrelated. At high u, the potential di�er-
ences at the most and the least loaded points are
large, depend on u only weakly, and are equal for the
boundary cases js � jL and js � jL. At low rates,

the polarization di�erence tends to zero in all cases,
and the most abrupt drop is observed for the similar
pro®les c�x� and g�x� which appears to provide a
more e�cient operation of the PE in this case.

3.5. Consideration of url variability

The above results have been obtained with the pro-
viso that the equilibrium potential of the main reac-
tion is kept constant throughout the PE. It would be
expected that at low u and the abrupt depletion of the
solution, a shift of url of the local polarization curves
in the negative region and the resulting reduction in
the limiting current plateau may be essential factors.
Just the same calculations, conducted with allowance
for possible variability of url, have shown that as c�x�
changes by even three to four orders per pass, the
in¯uence of this factor is practically absent. This is
probably due to a decrease in the polarization dif-
ference with decreasing solution ¯ow rate (Fig. 10).
Only at a rather larger depletion extent (about 7±10
orders), signi®cantly exceeding really available con-
trol limits, does the e�ect of url variability manifest
itself and leads to the reduction in the PE layer width
working at the limiting di�usion current.

4. Conclusion

The potential possibilities of the uniform porous
matrix conductivity as a factor in¯uencing the depth
of the main process penetration into a PE have been
estimated. The results suggest that these possibilities
depend on the electrolysis conditions.

Thus, the most favourable conditions (a porous
electrode similar to one with equal polarization, the
highest values of Ld) are observed only at very low
solution ¯ow rates and large di�erence in the elect-
roactive component concentration along the depth of
the PE. In this case, the optimum phase conductivity
relation is that allowing achievement of a monotonic
polarization pro®le similar to the main component
concentration pro®le. It is apparent, however, that an

Fig. 10. The in¯uence of the solution ¯ow rate on the di�erence
between the maximum and minimum polarization inside PE at the
same parameters and notations as in Fig. 8.
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advantage in the working layer depth is obtained in
this case due to the decrease in the solution ¯ow rates
and the productive capacity of the apparatus.
Moreover, a su�ciently uniform potential distribu-
tion is accompanied, in this case, by the nonuniform
current density distribution along the depth of the
PE, which is extremely undesirable, for example, in
the use of a PE for metal extraction from solutions.
The nonuniform metal distribution along the depth
of a layer leads to rapid ®lling of pores at the most
loaded end of the electrode and to termination of its
e�ective operation.

As the solution ¯ow rate increases, the concen-
tration di�erence decreases and an abrupt decrease in
Ld and the working layer width is observed simulta-
neously. The value of the latter increases with de-
creasing concentration (� 1=

�����
c0
p

). Also, from this
point of view, the most natural ®eld of PE application
is the treatment of dilute solutions [2]. But this way of
elevating the PE e�ciency is also limited, for exam-
ple, by the reduction of dissolved oxygen [20].

At high solution ¯ow rates and the average or high
concentrations of the main component, the depth of
the e�ective working layer is small, and to provide the
operation of even a thin layer a considerable current
overload, attended by a noticeable decrease in the
current e�ciency is required. An optimal choice of
the solid phase conductivity (js � jL) increases Ld
only one and a half times. So it may be concluded
that the possibilities of further increase in PE e�-
ciency on the basis of a uniform conducting matrix
are practically completely exhausted. Further pro-
gress is possible only with the application of new
factors, for example, nonuniform conducting matri-
ces [10, 21, 22].
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